

django-flexquery

This library aims to provide a new way of declaring reusable QuerySet filtering
logic in your Django project, incorporating the DRY principle and maximizing user
experience and performance by allowing you to decide between sub-queries and JOINs.

Its strengths are, among others:

	Easy to learn in minutes

	Cleanly integrates with Django’s ORM

	Small code footprint, hard for bugs to hide - ~150 lines of code (LoC)

	100% test coverage

	Fully documented code, formatted using the excellent Black Code Formatter [https://github.com/python/black].

When referencing a related model in a database query, you usually have the choice
between using a JOIN (X.objects.filter(y__z=2)) or performing a sub-query
(X.objects.filter(y__in=Y.objects.filter(z=2))).

We don’t want to judge which one is better, because that depends on the concrete
query and how the database engine in use optimizes it. In many cases, it will hardly
make a noticeable difference at all. However, when the amount of data grows, doing
queries right can save you and the users of your application several seconds, and
that is what django-flexquery is for.

Requirements

Continuous integration ensures compatibility with Python 3.7 + Django 2.2 and 3.0.

Installation

pip install django-flexquery

No changes to your Django settings are required; no INSTALLED_APPS, no
MIDDLEWARE_CLASSES.

Q

The Q implementation provided by this library contains a simple addition to that
of Django.

Creating a Q object works as usual:

>>> from django_flexquery import Q
>>> q = Q(size__lt=10)
>>> q
<Q: (AND: ('size__lt', 10))>

But this implementation adds a prefix() method, which allows prefixing some
related field’s name to the lookup keys of an existing Q object. Since Q
objects can be nested, this is done recursively.

An example:

>>> q.prefix("fruits")
<Q: (AND: ('fruits__size__lt', 10))>

Nothing more to it. The real power comes when using these Q objects with
FlexQuery.

API

Extended Q implementation with support for prefixing lookup keys.

	
class django_flexquery.q.Q(*args, _connector=None, _negated=False, **kwargs)

	A custom Q implementation that allows prefixing existing Q objects with some
related field name dynamically.

	
prefix(prefix)

	Recursively copies the Q object, prefixing all lookup keys.

The prefix and the existing filter key are delimited by the lookup separator __.
Use this feature to delegate existing query constraints to a related field.

	Parameters

	prefix (str) – Name of the related field to prepend to existing lookup keys. This isn’t
restricted to a single relation level, something like “tree__fruit”
is perfectly valid as well.

	Returns Q

	

FlexQuery

The FlexQuery class provides a decorator for functions declared on a custom
Manager or QuerySet:

from django_flexquery import FlexQuery, Manager, Q, QuerySet

It's crucial to inherit from the QuerySet class of django_flexquery, because
the FlexQuery's wouldn't make it over to a Manager derived using as_manager()
with the stock Django implementation. That's the only difference however.
class FruitQuerySet(QuerySet):
 # Declare a function that generates a Q object.
 # base is a copy of the base QuerySet instance. It's not needed most of
 # the time unless you want to embed a sub-query based on the current QuerySet
 # into the Q object.
 @FlexQuery.from_func
 def large(base):
 return Q(size__gte=10)

FruitQuerySet.large now is a sub-type of FlexQuery encapsulating the custom
function.

You can then derive a Manager from FruitQuerySet in two ways, using the
known Django API:

Either use from_queryset() of the Manager class provided with this module.
class FruitManager(Manager.from_queryset(FruitQuerySet)):
 ...

Or, if you don't want to add additional manager-only methods, create a Manager
instance inside your model definition straight away.
class Fruit(Model):
 objects = FruitQuerySet.as_manager()
 ...

When we assume such a Manager being the default manager of a Fruit model
with a size field, we can now perform the following queries:

Fruit.objects.large()
Fruit.objects.filter(Fruit.objects.large.as_q())

Internally, this is made possible by some metaclass and descriptor magic instantiating
the FlexQuery type whenever it is accessed as class attribute of a Manager
or QuerySet object. The resulting FlexQuery instance will be tied to its
owner and use that for all its filtering.

A FlexQuery instance is directly callable (Fruit.objects.large()), which just
applies the filters returned by our custom Q function to the base QuerySet. This
is a well-known usage pattern you might have come across often when writing custom
Django model managers or querysets.

However, FlexQuery also comes with an as_q() method, which lets you access the
Q object directly (Fruit.objects.filter(Fruit.objects.large.as_q())). The
FlexQuery can mediate between these two and deliver what you need in your
particular situation.

Conversion Costs

Providing a standalone QuerySet filtered by the Q from a supplied Q
function is a cheap operation. The Q object generated by your custom function is
simply applied to the base using QuerySet.filter(), resulting in a new QuerySet
you may either evaluate straight away or use to create a sub-query.

Why do I Need This?

This approach enables you to declare logic for filtering once with the Manager
or QuerySet of the model it belongs to. When combined with the prefix() method
of the extended Q object implementation, related models can then simply fetch the
generated Q object and prefix it with the related field’s name in order to reuse it
in their own filtering code, without needing sub-queries. Think of something like:

class TreeQuerySet(QuerySet):
 @FlexQuery.from_func
 def having_ripe_apples(base):
 return Q(kind="apple") & Fruid.objects.large.as_q().prefix("fruits")

API

This module provides a convenient way to declare custom filtering logic with Django’s
model managers in a reusable fashion using Q objects.

	
class django_flexquery.flexquery.FlexQuery(base)

	Flexibly provides model-specific query constraints as an attribute of Manager
or QuerySet objects.

When a sub-type of FlexQuery is accessed as class attribute of a Manager or
QuerySet object, its metaclass, which is implemented as a descriptor, will
automatically initialize and return an instance of the FlexQuery type bound to
the holding Manager or QuerySet.

	
__call__(*args, **kwargs)

	Filters the base queryset using the provided function, relaying arguments.

	Returns QuerySet

	

	
as_q(*args, **kwargs)

	Returns the result of the configured function, relaying arguments.

	Returns Q

	

	
call_bound(*args, **kwargs)

	Calls the provided function with self.base.all() as first argument.

This may be overwritten if arguments need to be preprocessed in some way
before being passed to the custom function.

	Returns Q

	

	
classmethod from_func(func=None, **attrs)

	Creates a FlexQuery sub-type from a function.

This classmethod can be used as decorator. As long as func is None,
a functools.partial with the given keyword arguments is returned.

	Parameters

	
	func (function | None) – function taking a base QuerySet and returning a Q object

	attrs – additional attributes to set on the newly created type

	Returns InitializedFlexQueryType | functools.partial

	

	Raises

	TypeError – if func is no function

	
class django_flexquery.flexquery.Manager

	Use this class’ from_queryset method if you want to derive a Manager
from a QuerySet with FlexQuery members. If Django’s native
Manager.from_queryset was used instead, those members would be lost.

	
class django_flexquery.flexquery.QuerySet(model=None, query=None, using=None, hints=None)

	Adds support for deriving a Manager from a QuerySet class via
as_manager, preserving FlexQuery members.

contrib.user_based

FlexQuery variant that restricts the base QuerySet for a given user.

	
class django_flexquery.contrib.user_based.UserBasedFlexQuery(base)

	This is a slightly modified FlexQuery implementation, accepting either
a django.http.HttpRequest or a user object as argument for the custom
function and passing the user through.

When no user (or None) is given, the behavior is determined by the
no_user_behavior attribute, which may be set to one of the following constants
defined on the UserBasedFlexQuery class:

	NUB_ALL: don’t restrict the queryset

	NUB_NONE: restrict to the empty queryset (default)

	NUB_PASS: let the custom function handle a user of None

If the pass_anonymous_user attribute is changed to False,
django.contrib.auth.models.AnonymousUser objects are treated as if they were
None and the configured no-user behavior comes to play.

Because it can handle an HttpRequest directly, instances of this FlexQuery
may also be used in conjunction with the django_filters library as the queryset
parameter of filters.

	
call_bound(user, *args, **kwargs)

	Calls the custom function with a user, followed by the remaining arguments.

	Parameters

	user (django.contrib.auth.models.User | django.http.HttpRequest | None) – User to filter the queryset for

	Returns Q

	

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 django_flexquery	

 	
 	
 django_flexquery.contrib.user_based	

 	
 	
 django_flexquery.flexquery	

 	
 	
 django_flexquery.q	

Index

 _
 | A
 | C
 | D
 | F
 | M
 | P
 | Q
 | U

_

 	
 	__call__() (django_flexquery.flexquery.FlexQuery method)

A

 	
 	as_q() (django_flexquery.flexquery.FlexQuery method)

C

 	
 	call_bound() (django_flexquery.contrib.user_based.UserBasedFlexQuery method)

 	(django_flexquery.flexquery.FlexQuery method)

D

 	
 	django_flexquery.contrib.user_based (module)

 	
 	django_flexquery.flexquery (module)

 	django_flexquery.q (module)

F

 	
 	FlexQuery (class in django_flexquery.flexquery)

 	
 	from_func() (django_flexquery.flexquery.FlexQuery class method)

M

 	
 	Manager (class in django_flexquery.flexquery)

P

 	
 	prefix() (django_flexquery.q.Q method)

Q

 	
 	Q (class in django_flexquery.q)

 	
 	QuerySet (class in django_flexquery.flexquery)

U

 	
 	UserBasedFlexQuery (class in django_flexquery.contrib.user_based)

 nav.xhtml

 Table of Contents

 		
 django-flexquery

_static/file.png

_static/minus.png

_static/plus.png

